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The many-body diagrammatic perturbation theory is used for calculation of the 
correlation energy of closed-shell molecular systems. We apply Brueckner's 
concept of the two-particle renormalized interaction defined by a non-linear 
diagrammatic expression containing all possible (diagonal and/or non- 
diagonal) particle-particle, hole-hole and particle-hole intermediate elementary 
processes. Then, a "second-order" simple diagrammatic expression for the 
correlation energy can be formed, where the correlation energy is approximated 
by all the diagrams with biexcited intermediate states. An illustrative numerical 
application for the LiH molecule is presented. 
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1. Introduction 

Much progress has recently been made in the calculation of the correlation energy of 
small molecular systems by the many-body diagrammatic perturbation theory 
[-1-5]. It has, however, been pointed out that in order to obtain satisfactory agree- 
ment between the calculated and experimental correlation energy it is necessary to use 
(1) at least third order diagrammatic contributions, and (2) some class of diagrams 
should be summed up to all orders in the perturbation expansion [1]. The second 
item (2) is, up to now, usually realized via the summation of geometric series, which 
technique has been initially used by Kelly [1, 6]. He demonstrated that such 
summations produce the so-called shifted denominators containing not only the one- 
particle orbital energies but also some type of Coulomb and exchange two-particle 
matrix elements. In the framework of diagrammatic language this means that some 
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preselected higher-order diagonal ladder and ring diagrams are summed to infinite 
order. Nesbet [7] noted that in effect Kelly was employing the modified 
perturbation theory called in the current literature as the Epstein-Nesbet partition- 
ing of the full Hamiltonian [8, 9]. Later, this general conclusion has been 
reconsidered and justified by many other authors [4, 5, 10, 111. 

As was mentioned above, the technique of the shifted denominators affect only 
diagonal ladder and ring higher-order diagrams. An intermediate step, overcoming 
this restriction, represents the recent article of Mukhopadhyay et al. [ 10]. They have 
suggested a new partitioning of the Hamiltonian by which it is possible to eliminate 
the non-diagonal particle-hole ladders to all orders. In their approach it is necessary 
to solve iteratively a non-linear one-particle eigenproblem, the matrix elements of 
which are defined in the space of molecular orbitals. Therefore, in each iterative step 
the two-particle matrix elements should be recalculated for a new basis of molecular 
orbitals. The transformation process of the two-particle matrix elements from the 
basis of atomic orbitals to the basis of molecular orbitals is the most time-consuming 
step in numerical realization of any type of the many-body diagrammatic 
perturbation theory. For  these reasons we turn our attention on another possibility 
to include the infinite summations of the diagonal as well as the non-diagonal ladder 
and ring diagrams. Especially, we attempt to use the Brueckner concept of the 
renormalized two-particle matrix elements [12-14], originally introduced in 
microscopic nuclear theory to surmount the difficulties associated with hard-core 
internuclear potential. In the original formulation [14] of the renormalized two- 
particle matrix elements only particle-particle elementary intermediate processes 
were included. We enlarge the original determination of the renormalized matrix 
elements in such a way that not only particle-particle but also hole-hole and particle- 
hole elementary processes are taken into account. Such possible generalization has 
been initially studied by Chisholm and Squires [15] for many-nucleon systems. In 
their formulation the renormalized two-particle matrix elements are determined by 
a non-linear diagrammatic expression containing the particle-particle and hole-hole 
elementary processes, the particle-hole processes are neglected. In the present 
communication we use the renormalized matrix elements for construction of a 
"second-order" diagrammatic expression which determines the correlation energy 
(cf. Eq. (4)). The correlation energy is then determined by an infinite summation of 
diagrams containing only bi-excited intermediate states. In order to affect other 
diagrams with mono-, three-, . . .  excited intermediate states it is necessary to 
introduce the renormalized two-particle vertices in some fourth- or higher-order 
diagrammatic terms. Of course, such manipulations should be made very carefully, 
since a straightforward realization of this approach may produce diagrammatic 
terms which are included more than once. 

2. Theory 

In the second-quantization representation, when the Hartree-Fock molecular 
orbitals are used, the full Hamiltonian H of a molecular system can be written as 
follows [16] : 
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H =  (#o IHI ~o) + Ho + H1, (la) 

H o = ~ siN[Xi+Xi], (lb) 
i 

H1 =�88 ~ (0' Ivl kl>AN[X,+X+X, Xk], (lc) 
i jkl  

where the perturbation H t is built-up from the antisymmetrized two-particle matrix 
elements, ( ijl v I k l )  A = ( ijl v I k l )  - ( ijl v IIk ) .  Applying t he linked -cluster theorem 
[17, 183, the correlation energy of the molecular system described by H of Eqs. 
(1 a~c) is 

Ecorr = (O01Ht H1 [0o)c, (2) 
n = l  

where the subscript C means that only c o n n e c t e d  diagrams contribute. Now, we 
immediately introduce the generalized renormalized two-particle matrix elements. 
These matrix elements are the iterated interactions of two electrons in the many- 
electron medium. Diagrammatically, their defining equation can be presented as 
follows: 

h I hi - -  h I - ~ 

h 2 - >  p( ~' 

4- -I- Pl 

h 2 

+ 

(3) 

Here, the first diagram represents the original two-particle vertex, the second 
diagram represents the elementary particle-particle intermediate "scattering" 
process, and the third diagram represents a similar hole-hole process. Finally, the 
last two diagrams represent two distinct particle-hole elementary processes. They 
are symmetrized in order to ensure the same symmetric properties for the new 
renormalized two-particle matrix elements as have the original two-particle matrix 
elements from the perturbation (lc). Using the renormalized matrix elements (3), 
the correlation energy (2) can be approximated by the following simple diagram- 
matic expression" 

E & 
corr  

h2 I 

h~ 
b i -exc i ted 

(4) 
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Then, the correlation energy is approximated by all connected diagrams with only 
bi-excited intermediate states (this fact is schematically illustrated by the second 
diagram in (4)). Therefore, the diagrams with mono-, three, four-, . . .  excited 
intermediate states are neglected. From a detailed inspection of (2) it follows that 
such diagrams are emerging at fourth- and higher-order diagrammatic con- 
tributions. Up to the third order the formulae (4) and (2) give identical results for 
correlation energy. 

Algebraic interpretation of (3) and (4) can be done by the use of the Hugeholtz 
graphology [18]. For simplicity, we shall assume that the given molecule forms the 
closed-shell many-electron system. The heavy-dot vertices from (3) correspond 
to antisymmetrized renormalized two-particle matrix elements, (P~P2IgIhlhz)A 
= (PIP2 [g[ hlh2)-  (PAP2 [g[ h2hl). We shall assume, without loss of generality, 
that (PIP2 ]g[ h~h2) = (P2P~ [g[ h2hl ), and (2) the matrix elements (PIP2 [g] hlh2) 
are spin independent. Using these two assumptions, the spin variables can be simply 
removed. Then, from (4) we obtain: 

Ecorr~ ~ ~ (2(hlh2[V[Plp2)- (hah2[v[p2Pl))(PaP2[glhlh2) (5) 

p t p 2  hlh2 ~'hl ~-  ~h2 - -  ~'Pt - -  EP2 

Analogously, the algebraic interpretation of (3) has the following spin-free form: 

(PIP2191 h~h2) = (PlP2 [vlhah2) 

+ Z (PlpzIv[p'lP'2)(P'aP'2[g[hlh2) 
1~t~ ghl  "~- ~h2 -~  ~p~ - -  ~1~ 

+ ~,, (h'~h'2lvlh~h2)(puvzlglh'~h'2) (6a) 

+�89 hxh2) +z(p2pa, h2h~)], 

z(PlP2, hlh2)= 
- 2  ~ <h~2lvlhtP'~><paP'tlglh;h2> 

- 2  ~ (h~llvlP'xh~)(p2P'x[glh'lh2) 
h~p~ ~3h~ +/5h2 --/3p~ - -  gp2 

+4 ~ (h~llvlp'xh~)(p'tPElglh'~h2) 
hip( ~h[ "q- ~h2 - -  ~/~ - -  ~P2 

-2  ~ (h~lvlh~p'~)<p'~PEIglh'~h~) 
h~p~ ~'h~ -F ~'h2 - -  I~l,'r - -  ~'P2 

(6b) 

In all expressions (5) and (6a-b) summation indices run over occupied (hi, hl) and 
unoccupied (p], p~) spinless molecular orbitals, respectively. This system of non- 
linear Eqs. (6a-b) can be solved by straightforward iterative scheme: Xk+ 1 =f(Xk), 
which means that the (k + 1)'th iterative step for a quantity "x" (in our case the 
renormalized two-particle matrix elements) is calculated from the previous k'th 
step. The original matrix elements (p 1P2 [vlh I h2) are a good starting approximation 
to the renormalized matrix elements (plPzlglhlh2), i.e. in the zeroth (k=0) 
iterative step we put (PlP2 [glh ah2 ) = (p ~P2 lvlh lh2 ). The resulting self-consistent 
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renormalized matrix elements f rom this iterative procedure we shall use in (5) for 
calculation o f  the correlat ion energy. 

3. Application and Discussion 

In the first part  o f  this section we present the model  calculation o f  the correlat ion 
energy carried out  for the LiH molecule. Our  pr imary aim was to test the numerical 
behaviour  o f  a simple iterative scheme suggested in the end of  previous section. The 
LiH molecule Har t ree-Fock  calculation was performed at the internuclear sep- 
arat ion 3.015 a.u. The basis set consists of  the following contracted Gaussian a tomic 
orbitals:  Li a tom - four s orbitals and two p~ orbitals, H a tom - two s orbitals and 
one p~ orbital. The orbital exponents and contract ion coefficients were taken f rom 
Refs. [19] and [20], the orbital exponent of  hydrogen p~ was 0.75. The Hartree- 
Fock  energy for this basis is EHF = --7.98250 a.u. (Har t ree-Fock energy limit = 
-7 .98731  a.u. [21]). We present in Table 1 the individual per turbat ion contri- 
butions, E~o"~r, for the correlation energy calculated in each iterative step. The first 
two rows correspond to exact (of course, in the given basis set of  Gaussian AO's )  

~'(3) second-order,  E (2) and third-order,  - c  .... contributions,  respectively. The next - - c o r r ,  

higher-order (n >~ 4) contr ibut ions are calculated by further iterative steps (k ~> 2). 
For  instance, the second iterative step (k = 2) determines four th-order  contribution,  

(4) E~o~r, approximated by,tall four th-order  connected diagrams containing merely bi- 
excited intermediate states. The fourth-order  diagrams with mono- ,  three-, and 
four-excited intermediate states are neglected. For  the second-order contribution,  
Ec 2) .... the following breakdown onto  individual pairs was obta ined '  E~o2)r(1-1)= 

~,(2) 2-2 -0 .010939  a.u., E~o2r)r(1-2) = -0 .000415  a.u., and ~orr( ) =  -0 .013742  a.u. Sim- 
ilarly, the third-order  contribution,  E~3, ). can be uniquely factorized onto  quantities 
corresponding to single terms f rom (3), i.e. onto  particle-particle, hole-hole, and 
particle-hole terms:  E~3o)~r(p-p)=O.OO5459a.u., E~3)r(h-h)=O.OO4999a.u., and 

Table 1. Individual perturbation contributions for 
correlation energy k'th iterative n'th 

step order E~r (a.u.) 

0 2 -0.025096 
1 3 -0.005765 
2 4 -0.001692 
3 5 -0.000601 
4 6 -0.000240 
5 7 -0.000102 
6 8 -0.000045 
7 9 -0.000020 
8 10 -0.000009 
9 11 -0.000004 

10 12 -0.000002 
11 13 -0.000001 

Total -0.033577 
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E~3o)rr(P-h) = - 0 . 0 1 6 2 2 3  a.u. From this simple illustrative example follows that all 
non-linear terms from the r.h.s, of  (3) have, probably, the same importance. Of 
course, the basis dependence of this conclusion must be further studied. The 
calculated correlation energy, E~o~r = - 0.033677 a.u., represents about  40.5 % of the 
experimental correlation energy, Ego~Pr = -0 .083  a.u. [3]. The basis set of  AO's  used 
here is not sufficient to obtain the full correlation energy of LiH molecule. The 
absence of functions which are able to affect an "angular"  correlation energy, e.g. 
p~, p~, d~, . . . ,  in the basis set is probably the source of this difference between the 
calculated and experimental correlation energy. 

Finally, we give a few remarks about  theoretical classification of the present method 
and also its efficiency with respect to other many-body diagrammatic techniques. 
The concept of  the two-particle renormalized interaction can be theoretically 
established and justified by the technique of Coester and Ktimmel [22, 23] (cf. also 
Refs. [24, 25, 16]). They have derived a coupled system of non-linear equations 
determining linked cluster amplitudes of the exact ground-state wave function. I f  we 
assume that this wave function is approximated only by biexcited unperturbed 
states, 17%)- - (1+82)1~0) ,  then the matrix elements of  the operator S 2 are 
determined by an equation very similar to our Eqs. (6a-b). 

Recently, after completing this work, a similar method as the presented one was 
published by Bartlett and Silver [26]. We thank the referee for turning our attention 
to this reference. The final formulae of Bartlett and Silver are constructed from 
detailed analysis of  the third- and higher-order perturbation contributions with 2- 
particle-2-hole (biexcited) intermediate states. Our approach including the infinite 
summations of  diagrammatic perturbation terms to correlation energy is elaborated 
from an apparently different standpoint than that of  Bartlett and Silver. We started 
from Brueckner's concept of  two-particle renormalized interactions simply defined 
by a non-linear diagrammatic expression. Such an approach can then be straightfor- 
wardly generalized also to other types of higher-order diagrammatic terms than 
those containing merely biexcited intermediate s ta tes .  

Infinite summation of diagonal ladders, which is automatically included in the 
Epstein-Nesbet partitioning of the Hamiltonian,  can be criticized for a toss of  the 
invariance to unitary transformations within degenerate sets of  one-particle 
functions [27]. This shortcoming cannot appear in our approach, since both the 
diagonal and non-diagonal ladders are consequently used. Therefore we still remain 
in the f ramework of the M oller-Plesset Hamiltonian. 
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